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Abstract

This contribution provides preliminary modelling results and data analysis of an existing neutral-temperature district heating
NTDH) network. The word "neutral" in this context refers to the fact that the distribution temperature is close to the ambient
emperature (e.g., 15–20 ◦C). This type of network is coupled with decentralized heat pumps (HP), for both heating and cooling.
hey offer the advantage of being reversible and the possibility of integrating low-temperature waste heat. The considered case

s located in Ospitaletto, Italy. The network includes two sources (industrial waste heat at about 25 ◦C and ground source
heat from aquifer wells at about 15 ◦C), it is mainly built with non-insulated pipes and has a length of approximately 2

m. Decentralized HPs installed at user substations provide the proper temperature for space heating and sanitary hot water
roduction.

An approximate model was applied to analyse the network operation. This model is focused on energy balances aggregating
ll users as a lumped demand and explicitly includes the behaviour of HPs substations, a component not available in other
istrict heating analysis tools. The simulation of an entire year of operation is considered, with an hourly resolution. Thermal
oad profiles are known and used as input to the model, while the outputs are compared with real data -a combination of
eekly and hourly measurements at the users substations-which include annual heat supply, electricity consumptions, thermal

osses, and seasonal performance factor (SPF). The results yield an overall deviation of 15% in the main indicators when using
re-defined data. In conclusion, even though the measured SPF is slightly lower than expected, the model reaches a reasonable
greement.
c 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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S. Calixto, C. Köseoğlu, M. Cozzini et al. Energy Reports 7 (2021) 140–149

1

(
s
h
f
s
(

l
t
m
t
m

b
m
h
a
l
c

f
N
F
c
c
i
i
w

2

2

b
1
t
a
i
i
p
C
l
5
h
n
t
m

. Introduction

One of the biggest challenges of conventional district heating (DH) systems is their high-temperature operation
80 ◦C or higher). As a result, distributed losses can be of the order of 10 to 30% on an annual basis, limiting the
ystem’s overall efficiency, and reducing the possibility to utilize renewable heat and exploit low-temperature waste
eat sources [1]. Thus, there has been growing interest in decreasing the operating temperature, as emphasized in
ourth-generation DH (4GDH) [2–4], in which the network temperature can be lowered for the direct production of
pace heating (SH) while sanitary hot water (SHW) preparation is sometimes considered with booster heat pumps
HPs) [5].

The neutral-temperature network with booster HPs concept (NT-DHC) proposes operating temperatures that are
owered in the range of 10–25 ◦C. Due to the recent and innovative nature of NT-DHC networks, a particular aspect
hat is commonly missing in current literature is the ability to model its performance, not only because the existing

odels do not focus on the analysis of decentralized HPs, but also because experimental data are scarce. Therefore,
he aim of this contribution is twofold: to analyse the operation of a real NT-DHC network and to calibrate a lumped

odel suited to perform scenario analyses.
Design-oriented DH tools are highly technical and provide features for accurate operation management, but can

e computationally very expensive, and in specific applications they can present a lack of transferability of the
ethods for wider usage. Exemplars of this kind are TERMIS [6], Thermos [7], and PlanHeat [8]. On the other

and, high-level modelling tools simulate the energy performance at a systemic level, with a low time-resolution
s they are focused on the long-term planning, and typically miss the evaluation of relevant aspects in DH: thermal
osses, electric energy consumed by the network pumps, substations efficiency, among others. Tools that fit in this
ategory are EnergyPLAN [9], LEAP [10], Crystal City [11], and METIS [12].

The model described in this paper contributes to fill this gap. It is expected to be integrated into a larger
ramework, the purpose of which is to perform techno-economic and environmental expansion scenarios of future
T-DHC at the local/community level. To meet this goal, the pre-design support tool developed during the
lexynets project [13] was taken as a starting point. It preserves the lumped demand approach, the possibility to
ustomize several pre-defined parameters, and quantifies the economic and environmental impact of various network
onfigurations although these aspects are not discussed in this paper. The status of the NT-DHC network analysed
n this case study comprises a small number of users, but an expansion is planned. In this version, a Python model
s presented to fully analyse on an hourly basis its performance, thus a technical validation is carried out in this
ork.

. Case study

.1. Description of the considered network

The Ospitaletto network is a small DH system located in the north of Italy. It matches well the NT-DHC concept,
eing supplied by two low-temperature sources: industrial waste heat (WH) and aquifer wells at about 25 ◦C and
5 ◦C, respectively. Users are mainly schools, all endowed with HP substations, which raise the temperature level
o about 55 ◦C, with fluctuations depending on the balance between SH and SHW production. The network has
n extension of around 2 km, with a simple tree structure and a conventional 2-pipe system. The layout is shown
n Fig. 1 (left panel), along with the location of the users and sources. A centralized pumping station located
n the proximity of the aquifer wells performs the circulation. The network is primarily made with high-density
olyethylene (HDPE) pipes without insulation, but part of the final distribution includes pre-insulated steel pipes.
onsidering the network’s control logic, the main pump aims to keep a constant differential pressure in the user

oop, meanwhile, regulation valves in the user substations provide a constant temperature difference (∆T ) of about
K. According to the operational plan of the network, only one of the sources is active at a time. The waste

eat source (s1) is known to be operating from Tuesday at 08:00 until Saturday at 16:00 every week except for
ational holidays, and the rest of the time is covered by the ground source (s2). The temperature distribution of the
wo sources for a typical winter week is shown in the right panel of Fig. 1, in agreement with the nominal values

entioned above. The network operation started in the Fall of 2018.
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Fig. 1. (a) Network layout. Red and blue circles indicate sources (s1, corresponding to the waste heat, and s2, corresponding to the aquifer
wells) and users (u1, . . . , u4), respectively. Distances are measured from the source s1; (b) Probability histogram of sources temperatures in
the period from Jan 13th to March 15th of 2020. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

2.2. Data analysis of the network operation

Different sets of data were made available by the network manager (from the COGEME company). For 2019,
weekly or biweekly monitoring data included all the main energy measurements (user thermal consumptions,
HPs electricity, and network pumping consumptions). Hourly data for 2020 also included specific measurements
(temperatures and flow rates at different points of the network). Unfortunately, due to the Covid-19 emergency,
the overall operation of 2020 is far from being representative (schools were closed from early March until the
reopening in September). Hence, to analyse the overall network performance a mixed approach was used: the yearly
performance analysis was based on 2019 data, while the detailed analysis of single aspects (e.g., daily profiles and
thermal losses) was carried out using selected 2020 data.

Fig. 2. (a) Monthly consumption retrieved from quasi bi-weekly measurements made in 2019. Monthly user thermal demand and HP
electricity consumptions are measured at the condenser side of the HP. Curves show the cumulative energy; (b) Monthly thermal demand
by user.

The monthly consumptions for 2019 are plotted in Fig. 2. In the left panel, the aggregate user consumptions are
hown, distinguishing between heat demand on the user side (condenser side of HPs) and electricity demand of
ubstations (HPs and user side circulation pumps). The right panel shows the split of the thermal demand among
he users. It is observed that the users are of different sizes, but that the yearly distribution is similar for users apart
rom User 4, which includes a multifamily building and exhibits some SHW consumptions also during summer
while the other users have zero consumption in this season).

A more detailed analysis can be carried out using 2020 data, in which different temperature conditions in the

etwork are reported in Fig. 3. The left panel shows the temperature distribution when source s1 is active (refer to
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Fig. 3. Temperature distribution in different points of the network for different operating conditions. (a) Distribution when source s1 is
active; (b) Distribution when source s2 is active; (c) Overall distribution at the pumping station. January–March 2020 data. See text for
details.

Fig. 1 for positions): source s1 temperature (green histogram) has a peak at about 25 ◦C, the supply temperature at
position s2 (where the pumping station and the aquifer wells are located; red histogram) has a peak at about 23 ◦C,
the return temperature in the same position s2 (blue histogram) has a peak at about 18 ◦C. Fig. 3(b) presents the
ituation when source s2 (aquifer wells) is active: the green histogram is replaced by the light-blue histogram for
he aquifer well temperature. All temperatures are clearly shifted to lower values. Finally, the right panel shows
he overall temperature distributions at the pumping station (for all source cases). The supply-return temperature
ifference is of the order of 5 K, in reasonable agreement with the expected HP control.

Concerning the users’ consumption behaviour, it is interesting to differentiate between summer and winter
perations, since this corresponds to a distinction between SHW and SH operating conditions, respectively. This
s also relevant because HPs operate according to a climatic curve, hence their COP depends on the ambient
emperature and the type of demand. The left panel of Fig. 4 shows the typical distribution of SHW throughout the
ay. These profiles correspond to an average of few days of May 2020 (18th–23rd May 2020). All users have a much
ower consumption during the night (zero for Users 1–3, including schools only). During the period from 06:00-
3:00, a rather uniform random pattern can be seen instead. The observed SHW order of magnitude is expected
o hold for most of the year, allowing to estimate the SH demand by subtracting the estimated SHW from the
verall measured consumptions. The right panel of Fig. 4 focuses on SH demand and analyses their relationship
ith heating degree days (HDD): a reasonably linear behaviour is found (hourly data in the period January-March
020 are used, where SH is dominant, and any error done for the SHW estimation is less relevant). This result
uggests that a reasonable interpolation of the weekly/biweekly data of 2019 at a daily level can be done based on
DD. For an interpolation at an hourly level, one can also use the 2020 hourly data to retrieve a typical daily SH
rofile. Sample results for the different users are shown in Fig. 5(a), while Fig. 5(b) shows the aggregate behaviour
etrieved from the pumping station data.

Fig. 4. (a) Sanitary hot water pattern of users 1 and 2; (b) Linear regression between thermal energy and heating degree days.

In general, winter plots are obtained from the retrieved data between 3rd Jan 2020–15th Mar 2020, with 747
ourly mean samples for s1, and 359 for s2.

As mentioned, the analysis of the 2020 data was used to interpolate 2019 data at an hourly level. Heat demands,
easured in the user substations condenser side (Eth,tot,h,ui ), are the sum of the heat used for SHW preparation

E ) and SH (E ). Summarizing, assuming that the daily total heat demand for SH is proportional
th,SH W,h,ui th,SH,h,ui
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Fig. 5. February–March 2020 relative profile data.; (b) Aggregated monthly thermal load in 2019.

to HDD (Cuseri ∼ Eth,SH,d,ui /H DD), a proportionality constant (Cui ) is estimated from linear regression applied
to HDD and daily SH demand for the data collected in the period between Jan 2020 and Nov 2020. This allows
us to estimate the daily SH heat demand for 2019, which is then distributed according to the users’ hourly relative
profiles that are shown in Fig. 5 (left). Relative profiles are generated from the data collected between February
2020 and March 2020, assuming that the schools were in normal operation and were not affected by Covid-19
related measures.

Overall network thermal losses (Eth,loss,ntw) were estimated by the difference between the total source thermal
energy (Eth,W H + Eth,g) and the total thermal energy delivered to the evaporator side of user substations’ HPs
(Eth,H P,e). This was estimated from the difference between the thermal energy delivered on the HP condenser
side (Eth,H P,c) and the HP electricity consumption (Eel,H P ), assuming an adiabatic system. The efficiency (ηntw)
was then estimated as the ratio between the delivered energy to the users Eth,H P,e and the total energy produced
(Eth,W H + Eth,G). The timeframe considered was between Jan 22nd–31st of 2020, which was the only period of
available data with all the necessary measurements.

3. Methodology

3.1. Neutral-temperature district heating network model

The structure of the NT-DHC network modelled in this case study considers the individual HPs located on the
users’ side as an aggregate load that draws the one-direction flow from the network supply pipe. The sources are
connected in parallel, giving priority to the source with the highest temperature available, in this case, the steel
plant. When this source is not available, the network is tempered down to the ground source temperature, assumed
to provide continuous heat throughout the year.

The network supply temperature (Tnet,s), assumed to be constant along all the network pipes, was estimated
at each hour as a function of the available sources’ temperature. The model considers the presence of various
decentralized waste heat sources at different temperatures, however, in this case study the calculation is much
simpler since only one waste heat plant is present, thus the estimated temperature supply is either (Ts1) when the
plant is in operation, or the aquifer wells temperature (Ts2 ) on the contrary.

The required temperature levels for SH (TSH ) provided to the users were calculated through a climatic curve.
This temperature is bounded within the range of minimum (Tbldg,min) and maximum (Tbldg,max ) limits depending
on the outdoor temperature (Tamb) in this location. Since each user has its own SH setpoints, a weighted average
proportional to their total thermal load was considered. Similarly, the minimum (Tamb,min) and maximum (Tamb,max )
ambient temperature thresholds in which the SH system turns on or off were assumed according to the same
proportion.

The determination of the ground temperature (Tg) for the estimation of thermal losses in the entire network was
done according to textbook equations [14]. In this description of the ground behaviour, the ground responds in terms
of daily or seasonal temperature cycles. Therefore, a daily approximation of the ambient temperature data available
for the case study location was performed.
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Fig. 6. (a) Input profiles for the model. Hourly ambient temperature (blue line), and ground temperature (red dashed line); (b) Aggregated
thermal load profiles (condenser side of heat pumps (HPs)).

A curve that fits the data in a periodic manner is a typical problem in physics, in this case, it was applied a
machine learning function in Python called “optimize-curve-fit” whose role is to apply non-linear least squares to
fit a function of the type Tamb, f i t (t) = disp+amp×cos(t ×w−∅) to some input data [15]. The fitted curve served
as input for the ground temperature equation described in [16]. The resulting ambient temperature fitting and the
consequent ground curve are presented in Fig. 6(a):

The HPs located on the users’ substations work in parallel, with a variable operation depending on the load
conditions. In this model, they are modelled in an aggregate manner, since the future application of this tool is to
be able to reproduce fast estimations of potential new DH extensions with a larger number of users, under conditions
where heating and cooling are supplied by the same network. Thus, Eq. (1) was selected from the literature [17]
to represent a simplified physical understanding of the HPs pool performance. This COP function depends on the
average temperature leaving the HPs’ evaporators (Te,o), which values vary depending on the available sources’
emperatures; and the required temperature delivered on average to the users (Tc,o). In addition, a correction factor

(ηC F ) was included in this formula, to account for phenomenological inefficiencies of the modelled system due to
other physical events beyond the scope of this analysis:

C O P = 1 − ηm + ηm × C O PC (1)

C O PC =
Tc

T c − Te
(2)

Tc(e) = Tc,o(e,o) ± ∆TH X (3)

C O PC F = ηC F × C O P (4)

C O PC corresponds to the Carnot COP, a function of the condenser Tc and evaporator Te refrigerant temperatures.
hese variables were determined through the external fluid inlet and outlet temperatures (Te,o and Tc,o, respectively),
djusted by a temperature drop at the HP condenser and evaporator (∆TH X ), assumed to be the same in both cases.
he compressor efficiency ηm varies due to multiple factors such as the HPs model, size, and operating conditions.

t was possible to retrieve both ηm and ∆TH X from the suppliers’ machine datasheets by fitting equations (1) to
3) yielding the values of 53% and 2.15 K, respectively. Other effects – like thermal losses in substation pipes and
uffers, pumping consumptions on the users’ side, differences between datasheet and real HP performances, losses
ue to HP on/offs, climatic curve inaccuracies, and measurement uncertainty – are comprised in the aforementioned
C F factor. In the absence of further information (e.g., a specific calibration, see below), the default value ηC F = 1
an be used.

Thermal losses on the entire network (Eloss,net ) were calculated as a function of pipe lengths and diameters,
ipe insulation properties given by an average overall heat exchange coefficient (Uavg), network supply (Tnet,s) and
eturn temperatures (Tnet,r = Tnet,s− ∆Tevap), and ground temperature (Tg). The supply-return network temperature
ifference (∆Tevap) was assumed to be at a constant 5 K due to the heat pumps’ control settings, however, a
ensitivity analysis in the range from 3–5 ◦C is performed in alignment with the monitoring values presented in
145
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ig. 3. As the network geometry and pipes’ characteristics were known, all the material properties were obtained
rom datasheets. Similarly, as in the case of the COP estimation, a correction factor UC F was introduced, with the

aim of finding the best match with real thermal losses measurements. The default value before calibration is again
C F = 1.

Eloss,net = Uavg ×
[(

Tnet,s − Tg
)
+

(
Tnet,r − Tg

)]
(5)

Eloss,C F = UC F × Eloss,net (6)

3.2. Key performance indicators

The experimental data available was typically measured on a bi-weekly basis, therefore the key performance
indicators (KPIs) selected for the comparison were determined by integrating the energy data on a monthly and
annual fashion. The energy carried by the network to the HPs evaporator side (Eth,H P,e), assuming an adiabatic
system, was estimated as the difference between the heat delivered to the users (Eth,H P,c) and the HPs electric
consumptions (Eel,H P ). In addition, the seasonal COP (SCOP) is calculated as the ratio between the annual thermal
energy on the condenser side and the yearly electric energy consumed at the user substation (SCOP = Eth,H P,c/
Eel,H P ), this represents the performance of HPs only. The SPF, on the other hand, represents the overall efficiency of
the system. It includes the electricity used by the HPs and the electric consumption of the network pumps (Eel,pump).
Finally, Eel,pumpwas estimated as a function of the network flow rates and the pump capacity in each of the network
circuits (primary and secondary loops, and the aquifer wells circuit). Besides the yearly analysis, it was also of
interest to assess these indicators on a monthly basis to evaluate the seasonality effects.

The correction factor ηC F was evaluated to find the best fit with the real data. Several simulations were performed,
and the modelled parameters were compared according to two metrics: an accuracy metric with respect to the SCOP,
represented by Eq. (7), and the mean squared error (MSE) of the monthly COP estimates of the model according
to Eq. (8); where fi (C O P) is a vector of residuals, m (C O Pi ) is the COP predicted by the model in month i , and

O Pi is the observed value.

Accuracy = (SC O Preal − SC O Pcorr )/SC O Preal (7)

M SE =
1
N

N∑
i=1

fi (C O P)2 (8)

fi (C O P) = m (C O Pi ) − C O Pi (9)

4. Results

4.1. Sensitivity analysis

Temperature data on the network side of the users’ substations were not available for this analysis. However, they
could be estimated from the monitoring data at the pumping station. The most relevant case is when source s1 is
active (since this occurs for more than 80% of the time), where the estimate yields Ts1 = 22 ◦C and ∆Tevap = 4 ◦C
for the temperature at the HP inlet and the supply-return temperature difference, respectively. With these conditions,
the hourly COP values are distributed in the range 4–5.6. In both cases, the best performance is obtained in climatic
conditions where the outdoor air temperature is within the range of 7 to 20 ◦C and when the maximum temperature
supplied to the users is below 50 ◦C. Since an uncertainty of a few degrees remains on Ts1 and ∆Tevap, a sensitivity
analysis was performed on these values, varying Ts1 in the range 18–22 ◦C and ∆Tevap in the range 3–5 ◦C. It
was observed that the hourly COP values are barely affected by these changes, i.e., less than 5%. The values Ts1
= 22 ◦C and ∆Tevap = 4 ◦C are hereafter considered the reference values for a “default model” simulation, i.e., a
simulation based on the real inputs but no adjustment of the correction factors ηC F and UC F (see Fig. 7).

4.2. Calibration

The available monitoring data was aggregated in a monthly fashion, to compare with the predicted COP and

SPF. Table 1 presents the accuracy of the model and the MSE calculated when using different correction factors
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Fig. 7. COP performance map. The colours represent hourly values in the range of the colour bars. (a) Effect of the climatic curve
mplemented in the model; (b). Climate influence in the COP. The points in dark blue indicate a better performance in spring and autumn
easons. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ηC F ) according to Eq. (4). It is observed that the best fit is obtained for ηC F = 75%. This means that the overall
ubstation inefficiencies are on the order of 25%. While a 15% of performance losses can be expected, this is a
ather high correction, which might be due not only to the actual substations’ performance but also to the various
pproximations of the model (see Fig. 8).

For the thermal loss correction factor UC F , a calibration was performed using selected data (Jan 22nd to Jan
1st). The total measured losses in this period are 26 MWh, significantly lower than the default prediction, yielding
C F = 37%. This large discrepancy is related to a shortcoming in the “default” calculations: the thermal losses

re estimated assuming an undisturbed ground temperature at the pipe wall. While this is appropriate for insulated
ipes (where insulation constitutes most of the thermal resistance) and can be used for conventional district heating
odelling, it fails in the case of non-insulated plastic pipes. It was found that the observed UC F corresponds to

he case in which the undisturbed ground temperature is reached at about 0.25 m from the pipe wall (this is the
quivalent of assuming the existence of an effective ground insulation layer of 0.25 m around uninsulated pipes).
inally, the results of the annual analysis show a reasonable agreement between the main KPIs of the model and

he data. (See Table 2).

Table 1. Sensitivity analysis of correction factor applied to COP function.

ηC F SCOP Accuracy (%) MSE

74 3.57 1.43 0.00268
75 3.62 0.0499 3.26 × 10−6

76 3.67 1.33 0.00232

Fig. 8. COP and SPF outputs before and after the application of the correction factor that better fits the experimental data.
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Table 2. Yearly performance and energy balances comparison.

Quantity Unit Model Monitoring data %Diff

E th,HP,c MWh/y 1557.63
TS1

◦C 20 22 24.28 ± 1.9
Taq

◦C 15.33 14.67 ± 0.14 3.79–55
SCOP arb. u. 3.61 3.64 3.62 0.27–0.55
SPF arb. u. 3.16 3.17 3.11 1.61–2.57
E th,HP,e MWh/y 1125.94 1127.61 1128.9 0.11–0.26
Eel,HP MWh/y 431.69 427.54 433.5 0.42–1.37
Eel,pump MWh/y 49.66 50.47 65.2 22.59–23.83

5. Conclusions

In this contribution, the performance of a real neutral-temperature DH network is analysed and compared with a
umped model suitable for scenario analysis. The network relies on source temperatures between 15 and 25 ◦C and

exhibits an SPF of about 3.11. Large parts of the network pipes are uninsulated, nevertheless yielding thermal losses
of the order of 30%. Electric pumping consumptions are of the order of 4% of the users’ thermal consumptions. The
approximated model provides proper order of magnitudes for these values even using simplified default estimates.
However, to get a good agreement (a few percent of the difference in the most important indicators), a calibration
of two simple phenomenological coefficients is required. The use of an aggregate approach seems satisfactory for
such a simple network (main deviations between non-calibrated model and real data can be explained with physical
details not related to the differences between single users). The main value of such an approximate aggregated model
is to offer a quick tool for scenario analysis (the model also includes economic estimates), a needed application for
this innovative neutral-temperature network strongly coupling thermal and electric consumptions.
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